16 research outputs found

    User needs elicitation via analytic hierarchy process (AHP). A case study on a Computed Tomography (CT) scanner

    Get PDF
    Background: The rigorous elicitation of user needs is a crucial step for both medical device design and purchasing. However, user needs elicitation is often based on qualitative methods whose findings can be difficult to integrate into medical decision-making. This paper describes the application of AHP to elicit user needs for a new CT scanner for use in a public hospital. Methods: AHP was used to design a hierarchy of 12 needs for a new CT scanner, grouped into 4 homogenous categories, and to prepare a paper questionnaire to investigate the relative priorities of these. The questionnaire was completed by 5 senior clinicians working in a variety of clinical specialisations and departments in the same Italian public hospital. Results: Although safety and performance were considered the most important issues, user needs changed according to clinical scenario. For elective surgery, the five most important needs were: spatial resolution, processing software, radiation dose, patient monitoring, and contrast medium. For emergency, the top five most important needs were: patient monitoring, radiation dose, contrast medium control, speed run, spatial resolution. Conclusions: AHP effectively supported user need elicitation, helping to develop an analytic and intelligible framework of decision-making. User needs varied according to working scenario (elective versus emergency medicine) more than clinical specialization. This method should be considered by practitioners involved in decisions about new medical technology, whether that be during device design or before deciding whether to allocate budgets for new medical devices according to clinical functions or according to hospital department

    Adaptive removal of gradients-induced artefacts on ECG in MRI: a performance analysis of RLS filtering

    No full text
    One of the main vital signs used in patient monitoring during Magnetic Resonance Imaging (MRI) is Electro-Cardio-Gram (ECG). Unfortunately, magnetic fields gradients induce artefacts which severely affect ECG quality. Adaptive Noise Cancelling (ANC) is one of the preferred techniques for artefact removal. ANC involves the adaptive estimation of the impulse response of the system constituted by the MRI equipment, the patient and the ECG recording device. Least Mean Square (LMS) adaptive filtering has been traditionally employed because of its simplicity: anyway, it requires the choice of a step-size parameter, whose proper value for the specific application must be estimated case by case: an improper choice could yield slow convergence and unsatisfactory behaviour. Recursive Least Square (RLS) algorithm has, potentially, faster convergence while not requiring any parameter. As far as the authors' knowledge, there is no systematic analysis of performances of RLS in this scenario. In this study we evaluated the performance of RLS for adaptive removal of artefacts induced by magnetic field gradients on ECG in MRI, in terms of efficacy of suppression. Tests have been made on real signals, acquired via an expressly developed system. A comparison with LMS was made on the basis of opportune performance indices. Results indicate that RLS is superior to LMS in several respects

    The preservation of the CE mark for a medical device further to a maintenance process

    No full text
    In this paper we analyze the conditions for the preservation of the CE mark of a medical device further to maintenance process, especially in the case in which the maintenance is managed by a third company. Analyzing the European Directives on medical devices, we observed that the conditions, in which the manufacturer obtained the CE mark, might change when another company manages maintenance. We propose three solutions to face this situation

    Assessment of quality control in US : a web service for preventive maintenance

    No full text
    Most sophisticated medical equipments need to work continuously but the more complex are the systems the lower is generally the Mean Time Between Failure (MTBF). Normally in case of fault the diagnosis was generally possible only after a Service Engineer visit on site even if this approach contributes to increase the down time
    corecore